If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+4X-255=0
a = 1; b = 4; c = -255;
Δ = b2-4ac
Δ = 42-4·1·(-255)
Δ = 1036
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1036}=\sqrt{4*259}=\sqrt{4}*\sqrt{259}=2\sqrt{259}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{259}}{2*1}=\frac{-4-2\sqrt{259}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{259}}{2*1}=\frac{-4+2\sqrt{259}}{2} $
| a/4=-16 | | 2|z+1|–3=z–2 | | 4(k+3)-7=13 | | a/4=^-16 | | 8(4+x)=647) | | −7(v+2)+4v+7=5v+12 | | 3(p-5)+1=10 | | 9(2+3x)=456) | | 5x+4-3(x+1)=9x+4 | | -1+13-18=x | | 9x+5=4x+8=5x | | 3y+20=42 | | 5(2x+10)=5010) | | 9x-(2x-17)=52 | | (-5/2x-3)=(7/3-2x)+(11/3x+5) | | 4a(a-3)=22 | | b÷3=-14 | | (3c+6)(3c-6)=3c^2-6^2 | | 3/4x+2=1/6x | | 3x+x=604 | | 6(4x+1)=783) | | .14y+.07(y+8000)=1610 | | .14y+.07y(y+8000)=1610 | | 7/30+2/3=x | | 18x=3x-20 | | 109=-6(7=4a)+7 | | 2x-64x=48 | | 2(m-3)+5=15 | | 3^(2x)×2^x=1/18 | | 6x/12=10/2x | | 2=v-6-5v | | x÷11=9 |